When Will Ray-tracing Replace
Rasterization?
SIGGRAPH 2002 Panel

Panel Focus

(When) will ray-tracing replace
rasterization for interactivity?

° Visualization
* Design
» Digital content creation preview

° Games

History of Interactive
Techniques

3D vectors

Scanline techniques

Rasterization with texturing and
depth buffering is just the newest
Easier/cheaper always wins when it
becomes “good enough”

Ivan Sutherland said in 1974 that Z-
buffering was "hopelessly inefficient".

Brad Grantham - Silicon Graphics

Philipp Slusallek - Saarland University
Tim Purcell - Stanford
David Kirk - NVIDIA
Kurt Akeley - NVIDIA, Stanford
Larry Seiler - ATI

Focus: Ray-tracing
Versus Rasterization

Very naive form of the question

* “What does the future hold?”

°* There’s a large continuum
What are the differences/benefits?
What alternatives are available?

Rasterization

for each global illumination pass {
for each object {
for covered pixels {
shade
update framebuffer




Rasterization
for each global illumination pass {
for each obhject |

for covered pixels {

update framebuffer

Rasterization

for each glebal illumination pass {

for each object {

ered pixels {
shade
update framebuffer

Rasterization

300 triangles
rendered

Rasterization Triangle Parameters
Linearly Interpolated

Takes Advantage Of
Screen Space Coherence

Rasterization

100 triangles
rendered

Rasterization

576 triangles
rendered




Rasterization

Many different variations
* Multiple pixels at a time

° Multiple triangles at a time
°* Could even cast rays per-pixel
For purpose of argument:
App feeds primitives one at a time

Ray-tracing

for all pixels {
for each ray in path {
find intersected object {
shade

}

update framebuffer

Ray-tracing

i, Reflected
17 Ray

Shadow
Test Ray

Refracted
Ray

Rasterization

Quality can be quite high
» Reflections, refractions, bump-mapping
* Various lighting models, shadows
* Motion blur, anti-aliasing, depth-of-field

> At what cost?

Ray-tracing

for all pixels {
for each ray in path {
find intersected object {
shade

}

update framebuffer

Ray-tracing

for all pixels {
for each ray in path {
find intersected object {
shade

update framebuffer




Ray-tracing

Each pixel
rendered fully
and
independently

Ray-tracing

Complex effects easy to implement

* But may require significant math per
intersection

Secondary interactions need help
* e.g. Caustics, color bleeding

* Solutions exist - Photon mapping, Metropolis

Ray-tracing Versus
Rasterization

Rasterization is FAST
° > 100 million polygons per second
® > 1 billion pixels per second
* Pipelined, parallelized hardware
Ray-tracing is SLOW (on CPU)
° 10s of M of raw tri intersections/sec

Not including add texture accesses, shading...

Ray-tracing

Many different variations

°* Trace bundle of rays at a time (partially invert
the loop)

* Use Z-buffer results as first pass
For purpose of argument:
Each pixel fully evaluated

Ray-tracing

Acceleration is necessary
» Hierarchy

°* Gridding, static and dynamic
* Locality - memory coherent

° Bundling

> SIMD

Why Use Ray-tracing?

Is it simply easier to implement?
Raytracing can rely on Moore's law

» Hardware implementation?

Quality of rasterization depends on
cleverness

* Pixel shaders
* Multipass




When Will Ray-Tracing
Replace Rasterization?

SIGGRAPH 2002 Panel




